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Plastic flow in two-dimensional solids

Akira Onuki
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 8 April 2003; published 11 December 2003!

A time-dependent Ginzburg-Landau model of plastic deformation in two-dimensional solids is presented.
The fundamental dynamic variables are the displacement fieldu and the lattice velocityv5]u/]t. Damping is
assumed to arise from the shear viscosity in the momentum equation. The elastic energy density is a periodic
function of the shear and tetragonal strains, which enables the formation of slips at large strains. In this work
we neglect defects such as vacancies, interstitials, or grain boundaries. The simplest slip consists of two edge
dislocations with opposite Burgers vectors. The formation energy of a slip is minimized if its orientation is
parallel or perpendicular to the flow in simple shear deformation and if it makes angles of6p/4 with respect
to the stretched direction in uniaxial stretching. High-density dislocations produced in plastic flow do not
disappear even if the flow is stopped. Thus large applied strains give rise to structurally disordered states,
which are metastable due to the Peierls potential. We divide the elastic energy into an elastic part due to affine
deformation and a defect part. The latter represents degree of disorder and is nearly constant in plastic flow
under cyclic straining.

DOI: 10.1103/PhysRevE.68.061502 PACS number~s!: 83.50.2v, 62.20.Fe, 61.72.Lk, 81.40.Lm
o
ib
n

t o
h

re

ea
c

-
he

de

e

io
la

a

-

-

re
la

n-

lar
sys-

soft
ular
ct
n-
per-

vior
enti-

r
ri-
pe-
ere,
. In
o
ize

-
nder
re

ob-

o
r.
n
le-

n

I. INTRODUCTION

Plastic flow has long been studied in crystalline and am
phous solids and in glassy polymers. In crystals irrevers
motions of dislocations give rise to plastic deformation a
large strains produce high-density dislocations@1,2#. The
nonlinear flow properties are very sensitive to the amoun
such defects and strongly dependent on the deformation
tory. Simulations of dynamics of dislocation lines have
cently been performed but are still most difficult@3–6#.

In amorphous solids at low temperatureT @7–13#, salient
features are as follows.

~i! Shear strains tend to be localized in narrow sh
bands in plastic flow above a yield stress. The width of su
shear bands is microscopic in the initial stage@14# but can
grow to mesoscopic sizes@15#, sometimes resulting in frac
ture. Shear bands were numerically realized at large s
strains in molecular dynamics~MD! simulations of two-
dimensional ~2D! two-component glasses@16,17# and in
simulations of a 2D phenomenological stochastic mo
@18#.

~ii ! As another aspect, in 3D MD simulations on mod
two-component glasses at lowT, Takeuchiet al. @19# ob-
served heterogeneities among mobile and immobile reg
after application of shear strains. In 2D and 3D MD simu
tions on model supercooled binary mixtures aboveTg , simi-
lar or much more extended dynamic heterogeneities h
been detected in quiescent states@20–23# and found to be
sensitively suppressed by applied shear flow@24#.

~iii ! Furthermore, at rather highT (*0.7– 0.8Tg) ~where
Tg is the glass transition temperature!, shear deformation oc
curs quasihomogeneously~still involving many particles in
each configuration change!, leading to highly viscous non
Newtonian behavior@24–27#.

~iv! We also mention a phenomenological approach to
produce shear bands from constitutive equations for the e
tic and plastic deformations@28#.

Glassy polymers also behave analogously@13,29,30#,
1063-651X/2003/68~6!/061502~17!/$20.00 68 0615
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where shear bands appear above a yield stress at lowT @31#,
and highly viscous non-Newtonian flow and significant elo
gation of the chain shapes occur at elevatedT @25,32#. In
glassy polymers, the entropic stress arising from molecu
orientations becomes significant at large strains and such
tems behave like cross-linked rubbers@13,29,30#.

Recently much attention has been paid tojamming rheol-
ogy observed in sheared states of supercooled liquids,
glassy materials such as dense microemulsions, or gran
materials@33#. In these systems, the thermal agitation effe
is very small if the particle size is large, but universal co
strained dynamics is realized under external forces. In su
cooled liquids~at relatively highT) @24# and dense micro-
emulsions ~at effectively low T) @34,35#, mesoscopic
dynamic heterogeneity and strong shear-thinning beha
have been observed, but shear bands have not been id
fied. In granular materials~at effectively zero temperature!,
strain localization is most conspicuous@36–38#.

In our recent work@39# we constructed a 2D nonlinea
strain theory taking into account the underlying local pe
odic lattice structure, where the elastic energy density is
riodic with respect to the shear and tetragonal strains. Th
we found that plastic flow starts with appearance of slips
this work we will show that the simplest slips consist of tw
edge dislocations having opposite Burgers vectors with s
a (a being the lattice constant! and they grow into mesos
copic shear bands as the applied strain is increased. U
uniaxial stretching@40#, well developed shear bands we
already numerically realized@17,18# and will be realized also
in our simulations. These shear bands make angles of6p/4
with respect to the stretched direction in agreement with
servations in various amorphous materials@8–11,29# includ-
ing granular materials@36,37#. These angles will be shown t
minimize the elastic energy of incipient slips in this pape

In crystalline solids, dislocation pairs in 2D or dislocatio
loops in 3D forming slip lines or surfaces should be nuc
ated at the inception of plastic deformation~in addition to
preexisting dislocations!. In amorphous solids, it has bee
©2003 The American Physical Society02-1
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controversial whether dislocations themselves can be
defined or not@7,10#. It is not obvious how to characteriz
the local rearrangement processes as to their shapes
sizes. In MD simulations on binary mixtures, they have be
detected as clusterlike objects with various visualizat
methods@19–25,41#. If the size ratio of the constituent tw
species is chosen such that crystallization is most suppres
strong frustration occurs in the packing of large and sm
particles in jammed states. Then the local crystalline or
can be well defined only over short distances. However,
2D amorphous soap bubble raft, Argon and Kuo@42# ob-
served that nucleation of a dislocation pair gave rise t
small-scale slip but such dislocations did not glide more th
two to three bubble distances. It is worth noting that Denget
al. @16# found extended sliplike strain localization in 2D M
simulations with the size ratio rather close to 1@see comment
~iv! in the last section#. Notice that the displacement fiel
around a slip is localized because the two constituent di
cations have opposite Burgers vectors. As a result, sm
scale slips should be well defined even in amorphous so
as long as the slip size does not much exceed the range o
local crystal structure.

The plastic flow phenomena are thus very complex, be
influenced by many factors, but they are ubiquitous in va
ous kinds of solidlike materials. The purpose of this pape
to present a well-defined Ginzburg-Landau model con
tently taking account of nonlinear elasticity. A merit of th
approach is that we can put emphasis on any aspect o
phenomena by controlling the parameters or changing
model itself. We will examine~i! the fundamental flow units
slips, in detail numerically and analytically and~ii ! plastic
flow numerically in simple shear and elongational~stretch-
ing! deformation. To make this paper simplest, as it is
first detailed exposition of our scheme, we will neglect~i!
vacancies and interstitials, or a variablem representing the
local free volume. A dynamic model including such an ad
tional degree of freedom has already been presented in
previous work@39#. We will also neglect~ii ! the configura-
tional frustration effect induced by the size difference b
tween the two species. Introducing these two ingredients
constitute future development of our scheme.

This paper is organized as follows. In Sec. II we w
present our dynamic model and explain our numeri
method. In Sec. III we will discuss the simplest form of sli
numerically obtained from our nonlinear elasticity theo
We will also derive some analytic expressions for the s
formation energy under general strain field starting with
Peach-Koehler theory@43# and compare them with numerica
results. In our scheme stationary slip solutions exist for sm
externally applied strains, where the force balance
achieved in the presence of the Peierls potential energy
the dislocation position in crystals@44,45#. Section IV will
present numerical results of the stress-strain relations and
patterns of the strains, the elastic energy density, and
displacement vector under applied strains. We will also g
a method for dividing the elastic energy into an elastic p
due to affine deformation and a defect part.
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II. MODEL EQUATIONS

A. Elastic energy

Recently Doiet al. @46# described plastic flow in a highly
viscous 2D crystal phase of block copolymers assuming
sliding motions. Their theory is analogous to a Frenk
Kontorova model for commensurate-incommensurate tra
tions @47#. Hereafter we present a model to describe plas
flow in 2D @39#. In terms of the displacement vectoru
5(ux ,uy) from a reference crystal state, we define the str
components as

e15¹xux1¹yuy ,

e25¹xux2¹yuy ,

e35¹xuy1¹yux , ~2.1!

where¹x5]/]x and¹y5]/]y. We calle1 the dilation strain,
e2 the tetragonal strain, ande3 the shear strain. If we suppos
a 2D triangular lattice with lattice constanta, the elastic en-
ergy should be invariant with respect to the rotations of
reference frame by6np/3 (n51,2, . . . ). Due tothis sym-
metry, the elasticity must be isotropic in the harmonic a
proximation@48#, being characterized by the bulk and she
moduli, K0 andm0, but it depends on the orientational ang
u of one of the crystal axes with respect to thex axis for
large shear strains. Under rotation of the reference frame
u, the shear strainse2 and e3 are changed toe28 and e38 ,
where@48#

e285e2 cos 2u1e3 sin 2u,

e385e3 cos 2u2e2 sin 2u. ~2.2!

These relations are obtained from the orthogonal transfor

tions, r85UJ •r and u85UJ •u, where r85(x8,y8) and u8
5(ux8 ,uy8) represent the position and the displacement,

spectively, in the new reference frame, andUJ5$Ui j % with
Uxx5Uyy5cosu andUxy52Uyx5sinu. Thee28 ande38 are
the tetragonal and shear strains, respectively, in the new
erence frame where thex8 axis is along one of the crysta
axes.

The elastic energy is written asFel5*dr f el with the elas-
tic energy density in the form

f el5
1
2 K0e1

21m0F~e38 ,e28!, ~2.3!

which is independent of the rotation strain,

v5¹xuy2¹yux . ~2.4!

Note thate1 andv are invariant with respect to the rotatio
of the reference frame. The simplest form ofF is given by

F~e38 ,e28!5
1

6p2
@32cosp~A3e382e28!

2cosp~A3e381e28!2cos~2pe28!#. ~2.5!
2-2
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This function is invariant with respect to the rotationu→u
1p/6, is a periodic function ofe38 with period 2/A3 for e28
50 ~simple shear deformation!, and becomes (e2

21e3
2)/2 for

small strains. In Fig. 1 we displayF(e3 ,e2) supposingu
50, where one of the crystal axes is along thex axis. We can
see a hexagonal lattice structure in thee3-e2 plane. As a
characteristic feature, Fig. 2 shows that it is almost isotro
or is a function ofe5(e3

21e2
2)1/2 only even for rather large

e(&0.5) ~in the unit cell at the origin!. In fact, we have the
Taylor expansion,

F~e3 ,e2!5
1

2
e22

p2

8
e41

p4

72
e61

p4

720
~e2

22e3
2!

3~e4216e2
2e3

2!1O~e8!. ~2.6!

FIG. 1. The scaling functionF(e3 ,e2) in Eq. ~2.5!, which is the
shear deformation energy density divided bym0 with one of the
crystal axes being along thex axis.

FIG. 2. F(e3 ,e2) for various directions in thee3-e2 plane. It
demonstrates isotropic behavior fore5(e3

21e2
2)1/2,0.5. The curve

for uniaxial stretching (e25e ande350) coincides with the curve
of n55 in the figure. The instability points are marked, whi
separate stable and unstable regions.
06150
ic

If we sete35e cosx ande25e sinx, the fourth term is re-
written as2(p4/720)e6 cos(6x) and is known to keep the
invariancex→x1p/3. Anisotropy appears in the terms o
order e6, but the anisotropic fourth term is at most 10%
the isotropic third term.

We examine elastic stability of homogeneously strain
states. That is, we superimpose infinitesimal strains,de3 and
de2, on e3 ande2 assumed to be homogeneous. The sec
order terms inF(e31de3 ,e21de2) read

d (2)F5
F33

2
~de3!21F23de3de21

F22

2
~de2!2, ~2.7!

whereFab5]2F/]ea]eb (a,b52,3). In the stable regions
the above second order contribution should be positive d
nite or the two eigenvalues,l1 andl2, of the 232 matrix
$Fab% should be both positive. In the Appendix we wi
derive this linear stability criterion by solving the linearize
version of our dynamic model to be presented in the follo
ing section. Figure 3 shows that the system is stable foe
&0.3, whereF depends almost only one. This result readily
follows if we neglect the anisotropy inF by setting
F(e2 ,e3)>G(e2). Then some calculations yield

Fab>2G8dab14G9eaeb , ~2.8!

where G85dG(e2)/de2 and G95dG8(e2)/de2. From Eq.
~2.6! we find G8>1/2 andG9>2p2/4. The determinant of
$Fab% becomes 4G8(G812G9e2). Thus the stability condi-
tion becomes

e,~G8/u2G9u!1/2>0.3, ~2.9!

around the origin in thee3-e2 plane. The elastic instability
with a negative eigenvalue (l1,0 or l2,0) causes rapid
relaxation processes resulting in localized slips and st
release. In plastic flow the stability condition is satisfied
most points throughout the system~see Fig. 10!.

FIG. 3. The stable regions of our elastic energy are shown
white, where the two eigenvalues of$Fab% are both positive. In the
gray region one of them is negative, and in the black regions bot
them are negative.
2-3
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If we assume that small solid elements are rotated with
shape changes with the local angular velocity (]vy /]x
2]vx /]y)/2, the orientation angleu is related to the rotation
strain as

u5 1
2 v1u0 , ~2.10!

whereu0 is the initial value independent of timet. This re-
lation was assumed in our previous paper@39#. However, it
becomes not well defined when the three crystal axes
rotated differently. For example, let a crystal with the thr
axes atu50, p/3, and 2p/3 be affinely deformed by a
simple shear deformation given byux5gy and uy50 (e3
5g ande250). Then the first axis along thex direction is
not rotated, while the other axes are rotated by

du656F tan21S A3

16A3g
D 2

p

3 G . ~2.11!

For g!1, we havedu6>23g/4, so Eq.~2.10! holds for the
average of the three rotation angles, (01du11du2)/3
52g/25v/2. Thus there remains ambiguity in Eq.~2.10!
particularly at large strainse*0.5 @49#. In this paper, in view
of the virtual isotropic behavior of our elastic energy fore
&0.5, we will simply set

u50 ~2.12!

throughout the system. To check the appropriateness of
assumption, we have also performed simulations with v
ous homogeneousu held fixed in the range 0,u,p/6. For
u5p/12, slip lines become slightly curved in plastic flo
and have higher elastic energies~by a few ten %!, but there
arises no qualitative change in the patterns and stress-s
relations~see also the comment at the end of Sec. IV!.

B. Dynamic equations

The elastic stress tensor should be defined for gen
strains. Let us change an arbitrary displacementu by an in-
finitesimal amountdu asu→u1du. The incremental chang
of the elastic energy density is written as@48#

d f el5(
i j

s i j

]

]xj
dui . ~2.13!

This is just the definition of the elastic stress tensors i j .
Under Eq.~2.12! @49# it is symmetric and its components a
expressed as

sxx5K0e11m0A2 , syy5K0e12m0A2 ,

sxy5syx5m0A3 , ~2.14!

whereAa5]F(e3 ,e2)/]ea are written as
06150
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A25
1

3p
@cos~A3pe3!sin~pe2!1sin~2pe2!#,

A35
1

A3p
sin~A3pe3!cos~pe2!. ~2.15!

For small strains we haveA2>e2 and A3>e3 to reproduce
the isotropic, linear elastic theory.

We assume that the lattice velocity

v5
]

]t
u ~2.16!

obeys

r
]

]t
v5“•sJ1h0¹2v1“•sJR, ~2.17!

where we introduce the shear viscosityh0 but neglect the
bulk viscosity@50,51#. ThesJR5$s i j

R% is a symmetric random
stress tensor and satisfiessxx

R 1syy
R 50, because the bulk vis

cosity is neglected, and is related toh0 by @48#

^s i j
R~r,t !s i j

R~r8,t8!&52kBTh0d~r2r8!d~ t2t8!.
~2.18!

The mass densityr will be treated as a constant in Eq
~2.17!. This is justified when the deviationdr5r2^r& is
assumed to be much smaller than the average^r& @52#. In the
usual linear elasticity theory@50# it is related to the dilation
strain e1 as dr>2re1, so we are assumingue1u!1 ~and
coincidence of the lattice and mass velocities@39#!. In our
simulation in the plastic flow regime atġ51023, for ex-
ample,ue1u attains a maximum in a range of 0.2–0.3 and t
varianceA^e1

2& increases up to about 0.06.
Due to the presence of the random stress,u and v are

random variables and Eqs.~2.16! and ~2.17! constitute non-
linear Langevin equations@48#. Their equilibrium distribu-
tion attained in the unstrained condition is given byP
}exp(2F/kBT), where the total free energyF is the sum of
the elastic energyFel and the kinetic energy as

F5E drS f el1
r

2
v2D . ~2.19!

Furthermore, if the random stress is omitted in Eq.~2.17! and
the dynamic equations are treated as deterministic ones
time derivative ofF is non-negative definite in the unstraine
condition as

d

dt
F52E dr(

i j
h0~¹iv j !

2<0, ~2.20!

where use is made of the relation,

¹•sJ52
d

du
F. ~2.21!
2-4
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The stationary conditiondF/dt50 is attained forv50 and
¹•sJ50. This is a condition to guarantee self-consistency
the dynamic equations which have stable equilibrium so
tions.

In the Appendix we will examine the linearized dynam
equations of our model around homogeneously strai
states to obtain two sound modes in the stable region.

C. Dimensionless forms

We make our equations dimensionless measuring spa
units of the lattice constanta and time in units of

t05~r/m0!1/2a. ~2.22!

The stress components and the elastic energy density
measured in units ofm0 and the elastic energy in units o
m0a2, while the strains remain unscaled. To avoid introdu
ing too many symbols, we will rewrite the scaled positi
vectora21r, time t0

21t, displacement vectora21u, and ve-
locity t0a21v simply as r, t, u, and v using the original
notation. Then, in the dimensionlesssJ , m0 is replaced by 1
andK0 by the ratio

l5K0 /m0 . ~2.23!

In terms of the scaled quantities the equilibrium distributi
is written as

P}expF2
1

e th
E drS l

2
e1

21F~e3 ,e2!1
1

2
v2D G , ~2.24!

where

e th5kBT/m0a2. ~2.25!

The parametere th represents the degree of the thermal flu
tuations~being proportional toT) and is an important param
eter, for example, in describing the decay of metastable st
by thermal agitations. If the dynamic equation~2.17! is made
dimensionless, the dimensionless viscosity is given by

h0* 5h0a21~rm0!21/2. ~2.26!

In Eq. ~2.18! the noise strengthkBTh0 is replaced bye thh0* .

D. Numerical method

We integrate Eqs.~2.16! and ~2.17! in the dimensionless
units on a 1283128 square lattice represented by (n,m)
(1<n,m<128) with x5nDx and y5mDx. The modulus
ratio l in Eq. ~2.23! is set equal to 1. For simplicity, th
mesh sizeDx and the dimensionless viscosity in Eq.~2.26!
are set equal to 1:

Dx51, h0* 51. ~2.27!

The first relation means that the mesh size is just equal to
lattice constant, and the second one is rewritten ash0
5a(rm0)1/2.

We next explain our boundary conditions employed.
the bottomy50, we always setux5uy50. At the top y
06150
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5L05128, we setux5gL0 and uy50 in the presence o
applied shear straing, while ux52uy5eL0/2 in the pres-
ence of applied tetragonal straine. In the x direction, we
impose the periodic boundary condition,u(x1L0 ,y,t)
5u(x,y,t).

We are interested in slips across which the atomic d
placement is discontinuous by the lattice constanta. In this
paper, by settingDx5a, we try to realize such singular ob
jects numerically. For this purpose it is convenient to defi
the strains and tensors on the middle points (n11/2,m
11/2), while the vectors are defined at the lattice poi
(n,m). For a vector componentA ~say,A5ux), ¹xA and¹yA
at (n11/2,m11/2) are defined as @A(n11,m11)
2A(n,m)1A(n11,m)2A(n,m11)#/2 and @A(n11,m
11)2A(n,m)2A(n11,m)1A(n,m11)#/2, respectively,
usingA at the four points (n11/261/2,m11/261/2). In the
same manner, we may construct the vector“•sJ at (n,m)
using the stress components at the four points (n61/2,m
61/2). With this space discretization, slips consisting o
straight line segment become well defined if their angle w
respect to thex or y axis is 0 orp/4. For other slip orienta-
tions, zigzag points appear along the slip line segment an
extra elastic energy is needed. On the other hand, if we
fine all the quantities on (n,m), slip discontinuity takes place
over a few lattice sizes, but macroscopic features such as
stress-strain relation remain almost unchanged. Furtherm
we will suppose simple shear or uniaxial deformation and
will be shown in the following section, the preferred sl
orientation angle is 0 orp/4 with respect to thex or y axis.
By this reason our simple numerical scheme seems to
allowable at least in this first attempt.

III. SLIPS

In our model system fundamental flow units in plas
deformation are slips composed of a pair of edge dislocati
with opposite Burger vectors~dislocation dipoles!. They are
analogous to quantum vortex rings in superfluid helium@48#.
Their elastic structure far from the dislocation cores m
well be described by the linear elasticity theory, but nonl
ear elasticity theory is needed~i! to suppress the divergenc
of the stress at the cores and~ii ! to stabilize the slips them
selves when they adjust to the crystal structure. Slips are
in a stationary state in the linear elasticity theory in the a
sence of impurities, etc., which can trap dislocations, as
be evident in Eq.~3.20!. In our nonlinear theory, those alon
the x axis (u50) can be in a stationary metastable state
their length is a multiple of the lattice constant. This is co
sistent with the Peierls-Nabarro theory@44,45#, which takes
into account the discreteness of the crystal structure
gives a periodic Peierls potential energy for the position
the dislocation center.

A. Slips in linear elasticity theory

To begin with, let us write the solution of an edge disl
cation asu5buLe5(bux

Le ,buy
Le), whose Burgers vector is

assumed to be along thex direction and is written asb
5(b,0). The linear elasticity theory@50# gives
2-5
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ux
Le5

1

2p F tan21S y

xD1
1

2~12n!

xy

x21y2G ,

uy
Le5

21

4p~12n! F ~122n!lnAx21y21
x2

x21y2G . ~3.1!

In the 3D theory the dislocation line is along thez axis andn
is 3D Poisson’s ratio. In our 2D theoryn is related tol in
Eq. ~2.23! as

n5
1

2
2

1

2l
. ~3.2!

In our simulations we setl51 and hencen50. In the linear
theory a slip is a superposition of two edge dislocations w
opposite Burgers vectors expressed as

uLs656FuLeS x2
,

2
,yD2uLeS x1

,

2
,yD G , ~3.3!

where, is the slip length andb561 ~both in units ofa).
The slip line segment is between the two points (2,/2,0)
and (,/2,0). The1 sign corresponds to a clockwise sl
~type C), and the2 sign to a counterclockwise slip~type
CC!. The displacement vector around a slip is clockw
~counterclockwise! for type C ~type CC! ~as will be evident
in Fig. 5 below!. Across the line segmentuxu,,/2 and y
50, the displacement is discontinuous as

ux
Ls6~x,y10!2ux

Ls6~x,y20!561. ~3.4!

The corresponding strains are written as

e1
Ls65

6~2n21!

2p~12n! F y

x1
2 1y2

2
y

x2
2 1y2G ,

e2
Ls65

71

p~12n! F x1
2 y

~x1
2 1y2!2

2
x2

2 y

~x2
2 1y2!2G ,

e3
Ls65

61

2p~12n! F x1~x1
2 2y2!

~x1
2 1y2!2

2
x2~x2

2 2y2!

~x2
2 1y2!2 G

6d~y!Q~,2/42x2!, ~3.5!

where x65x7,/2, and Q(z) is the step function being
equal to 1 forz.0 and to 0 forz,0. There appears nod
function in the dilation and tetragonal strains. The stra
diverge at the cores where the linear elasticity theory bre
down.

B. Slips in nonlinear elasticity theory

Next we numerically construct the corresponding slip
lution in our nonlinear elasticity theory for integer,. By
starting with the linear solutionuLs6 in Eq. ~3.3! at t50 and
neglecting the random stresssJR , we integrate Eqs.~2.16!
and~2.17! to seek the steady solutionus6 attained after tran-
sient relaxation. That is,
06150
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us6~x,y!5 lim
t→`

u~x,y,t !, ~3.6!

where u(x,y,0)5uLs6(x,y). The core points of the linea
solution, where the strains diverge, are placed at mid
points (n11/2,m11/2) of the mesh of integration att50.
The limit us6 is a steady metastable solution satisfying t
mechanical equilibrium condition,

“•sJ50. ~3.7!

It nearly coincides with the linear solutionuLs6 far from the
dislocation cores (ux6,/2u21y2*3 in our case! and keeps
satisfying the slip condition~3.4!. The strain and stress com
ponents calculated fromus6 are finite even in the core re
gions. In fact, in the presence of a slip along thex direction,
the maximum values attained byue1u, ue2u, ue3u, andusxyu in
the core regions are about 0.18, 0.08, 1.1, and 0.1, res
tively. In Fig. 4 we show thex componentux5ux

s1 of a
clockwise slip with,510 in the unstrained condition, whic
is discontinuous by 1 across the slip segment.

The elastic energy of a slip in our nonlinear theory is th
of central importance. We will neglect the Peierls potent
energy for the time being. We generally assume that a
line is oblique to thex axis making an angle ofw and is
under externally applied strains,

^e3&5g, ^e2&5e, ^e1&50, ~3.8!

where^•••& is the space average. The slip energy to crea
single slip is defined by

Fslip5F2F05E dr~ f el2 f el
0 !, ~3.9!

wheref el is the elastic energy density in our nonlinear theo
with one slip calculated numerically, andf el

0 5F(g,e) is that
in a homogeneously strained state. In the unstrained co
tion (g5e50), the expressionFslip5 ln ,/2p(12n) ~in
units of m0a2) is well known @53#.

FIG. 4. Thex component of the displacement for a numerica
calculated typeC slip with length 10 along thex axis in the un-
strained condition.
2-6
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PLASTIC FLOW IN TWO-DIMENSIONAL SOLIDS PHYSICAL REVIEW E68, 061502 ~2003!
Dislocation motions perpendicular to the slip line~climb
motions! create a large number of defects (},) and the en-
ergy needed is very large, so they may be neglected@54#. On
the other hand, dislocation motions along the slip line~glide
motions! involve displacements of a relatively small numb
of particles~of order 10 for a unit-length motion as can b
seen in the inset of Fig. 9! and hence play a major role i
plastic flow. A forceF5(Fx ,Fy) acting on a dislocation un
der an applied stress$s i j

ex% may be calculated using th
Peach-Koehler theory@1,2,43#. For b5(b,0) along thex
axis, the components of the force are written as

Fx52sxy
exb, Fy5sxx

exb. ~3.10!

~i! For a slip along thex axis,Fy is canceled by the force
due to an additional elastic deformation in the surround
medium. If the dislocation on the left is fixed and that on t
right is moved byd, along thex axis, the change ofFslip is
equal toFxd,. Here the Peierls force is neglected. The
fore,

]

],
Fel5Fx52sxy

exb. ~3.11!

Thesxy
ex consists of the stress produced by the dislocation

the left and the externally applied stress. For smallg the
externally applied stress ism0g, so in the units in which
m05b51 we obtain

Fslip5
ln ,

2p~12n!
7g,, ~3.12!

where2 is for typeC and1 is for type CC.
~ii ! For general anglew of the slip with respect to thex

axis, we rotate the reference frame byw to obtain the shea
strain g85g cos 2w2e sin 2w in the new reference fram
from Eq. ~2.2!. Therefore,

Fslip5
ln ,

2p~12n!
7~g cos 2w2e sin 2w!,. ~3.13!

If w is varied in Eq.~3.13!, Fslip is minimized for

w5 1
2 ~np2a! ~n50,1,2, . . . !, ~3.14!

wheren is even for typeC and odd for type CC, anda is
determined by

cosa5
g

Ag21e2
, sina5

e

Ag21e2
. ~3.15!

For simple shear deformation withg.0 ande50, the most
favorable slip orientation with the lowestFslip is w50 for
typeC andw5p/2 for type CC. For uniaxial stretching with
g50 ande.0, it is given byw52p/4 for type C andw
5p/4 for type CC, in agreement with the experimen
@8–11,29,36,37#.

As will be shown in the appendix, the slip directions d
termined by Eq.~3.14! are perpendicular to the wave vecto
which minimize the angle-dependent sound velocity follo
06150
g
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n
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ing from our linearized dynamic equations, or perpendicu
to the softestdirections for the sound modes. This coinc
dence is obtained with the aid of the isotropic behavior~2.8!,
so it is not a general result for anisotropic solids. We rem
that previous theories of strain localization@37,55,56# are
based on 1D analysis, where all the quantities vary only
one directionn normal to the plane of the band, and redu
to linear stability analysis for small amplitude perturbatio
for the wave vector in the direction ofn.

In Fig. 5 we display the displacement vectoru around
type C and type CC slips calculated in the unstrained con
tion. The slips are oriented in the most favorable directio
in shear deformation in~a! and in uniaxial stretching in~b!.
Away from the slips the directions ofu continuously change
to those of the macroscopic deformation supposed to be
plied. In Fig. 6 the slip energyFslip of type C slips with ,
510, 20, and 30 is shown as a function of the applied sh
strain g. For ugu&0.05 we confirm Eq.~3.12! with the 2
sign. For largerg the linear relation]Fslip /]g 5const does
not hold. For g,gc1(;20.1) or for g.gc2(;0.1), a
steady metastable solution becomes nonexistent and,
result, the slip grows up to the system length or shrinks
vanish in the simulation. In Fig. 7 the slip energyf el2 f el

0

with f el
0 5F(g,0) is displayed for the three valuesg50,

0.065, and20.04. Interestingly, the elastic energy density
the middle region between the two dislocations at the end
decreased for positiveg and increased for negativeg, giving
rise to the contribution2,g in the slip energy. In the core

FIG. 5. The displacement vectoru around typeC and type CC
slips with length 10. The orientations in~a! are most favorable in
shear deformation, while those in~b! are most favorable in uniaxia
stretching. The arrows are from the original undeformed position
the displaced position.
2-7
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AKIRA ONUKI PHYSICAL REVIEW E 68, 061502 ~2003!
region, f el has two peaks and is rather insensitive to appl
strains in our model.

Furthermore, in Fig. 8 we numerically demonstrate co
cidence of]Fslip /]g and the space integral ofsxy2g for a
single isolated slip in simple shear deformation. This relat
may be obtained from Eq.~2.1!. If g is increased by an
infinitesimal amountdg, the change ofFslip is written in
terms of the incremental displacementdui as

dFslip5E dr(
i j

@s i j 2s i j
0 #

]

]xj
dui , ~3.16!

where$s i j
0 % is the stress in the homogeneous state and us

made of the relation for the space average^]dui /]xj&
5d ixd jydg. The deviationdui consists of the applied dis
placement changed ixydg and the induced deviationdui8 lo-
calized near the slip. However, the contribution fromdui8
vanishes in Eq.~3.16! from the mechanical equilibrium con
dition ~3.7!. Thus,

]

]g
Fslip~,,g!5E dr@sxy2sxy

0 #. ~3.17!

In Fig. 8 g is in the rangeugu&0.1, sosxy
0 >g holds excel-

lently for our elastic energy. Similarly, the counterpart of E
~3.17! in the case of uniaxial stretching is written as

]

]e
Fslip~,,e!5

1

2E dr@sxx2syy2sxx
0 1syy

0 #. ~3.18!

Relations~3.17! and~3.18! hold for any strain amplitudes a
long as a steady slip solution can be obtained from Eq.~3.6!,
while Eq. ~3.12! or Eq. ~3.13! is valid only for very small
strains (&0.05 in our case!.

FIG. 6. The slip energyFslip vs applied shear straing for typeC
slips with length,510, 20, and 30 oriented along thex axis. For
ugu,0.05 relation~3.12! holds with slope2,. The arrows indicate
the instability points where expansion or shrinking of the sl
occurs.
06150
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C. Peierls potential energy

We continue to consider a slip along thex axis under
simple shear deformation, but the slip length, here can be
noninteger. For general, we modify Eq.~3.12! as

Fslip5
ln ,

2p~12n!
7g,1UPN~, !, ~3.19!

whereUPN(,) represents the Peierls potential energy be
zero for integer, and nonvanishing for noninteger,. The
force acting on the slip along the glide direction is then giv
by

FIG. 7. The slip energy density around a typeC slip with length
20 for g50 in ~a!, 0.065 in ~b!, and 20.04 in ~c!. In the middle
region between the dislocations at the ends, the elastic energ
decreased in~b! and increased in~c!.
2-8
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PLASTIC FLOW IN TWO-DIMENSIONAL SOLIDS PHYSICAL REVIEW E68, 061502 ~2003!
]

],
Fslip5@2p~12n!#21

1

,
7g1

]

],
UPN~, !. ~3.20!

This force should vanish for a stationary slip. In the realm
linear elasticity theory, where the crystal structure
smoothed out, the Peierls potential energy is nonexistent
we are led to the following conclusion: A type CC sl
shrinks for any,(.1), but a typeC slip shrinks for,,,c

L

51/@2p(12n)g# and expands for,.,c
L . Here we assume

g.0. If , is fixed, we obtain a critical shear straingc
L

51/@2p(12n),#. In our nonlinear theory, however, thi
critical length~or strain! loses its physical relevance.

In our simulations~without the random stress! slips can
be stationary suggesting the existence of the Peierls pote
energy. To show this, we numerically create two typeC slips
along thex axis obtained in limit~3.6!; one is in the range
0<x<20 with length 20, and the other is in the range21
<x<20 with length 21. Here the positions of the dislocati
core on the left are different by 1 but those on the rig
coincide. As a result, the corresponding displacementsu20
andu21 are different only near the core region on the left,
can be seen in the inset of Fig. 9. Note that the differe
u85u212u20 is the displacement realized when the shor
slip grows into the longer one. Now, we calculateF for the
interpolated displacement,

u,5~12a!u201au215u201au8. ~3.21!

As the slip energy at,5201a (0,a,1), Fslip(,)5F
2F0 is determined as in Eq.~3.9!. TheFslip(,) here depends
on the displacement path connectingu20 and u21. In Fig. 9
the resultant energy differenceDFslip5Fslip(,)2Fslip(20) is
shown. The Peierls potential is determined byUPN(,)
5Fslip(,)2@ ln ,/2p(12n)7g,# from Eq. ~3.19!. We rec-
ognize thatFslip(,) takes a maximum at,5,max between 20
and 21 and takes local minima at,520 and 21. It follows
that the stable force-balance condition]Fslip /,50 with

FIG. 8. Coincidence of the derivative]Fslip /]g (3) and the
space integral ofsxy2g (1) confirming the general relation
~3.17!. These quantities are calculated from the steady
solutions.
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]2Fslip /,2.0 holds at,520 and 21. The maximum ofUPN
is about 0.03 forg50. Figure 9 also indicates that,max
→21 as g→gc1(>20.09) and ,max→20 as g→
gc2(>0.12). For integer, and noninteger,8, the critical
strains,gc1(,) and gc2(,), with respect to shrinkage an
expansion satisfy the following:~i! ]Fslip(,8)/],8.0 for
any ,8 smaller than, for g,gc1(,), ~ii ! ]Fslip(,8)/],8
,0 for any,8 larger than, for g.gc2(,), and~iii ! Fslip(,)
is locally minimum at integer length, for gc1(,),g
,gc2(,). These are consistent with the positions of the
stability points in Fig. 6.

IV. PLASTIC FLOW

In this section we induce deformation at a constant str
rate, ġ or ė, or cyclic shear deformation fort>0 in the
presence of the random stress tensorsJR with e th50.1 ~ex-
cept for the curve~b! in Fig. 21 wheree th50.25). At t50,
the values ofv at the lattice points are Gaussian rando
numbers with variance 0.01. The shear stress and the no
stress difference in the following figures are the space a
ages^sxy& and ^sxx2syy&, respectively.

A. Shear deformation

In Fig. 10 we show the stress-strain curves obtained
integration of Eqs.~2.16! and ~2.17! under a constant shea
rateġ. At small g(t)5ġt these curves first follow the curv
in the homogeneous case,

sxy>A3~g!5
1

A3p
sin~A3pg!, ~4.1!

whereA3 was introduced in Eq.~2.15!. For the curve ofġ
51024 and that ofġ51023 ~with the higher peak! we set

p

FIG. 9. The slip energy differenceDFslip(,)5Fslip(,)
2Fslip(20) in the range 20<,<21 obtained for the extrapolate
displacement~3.21! for g520.04, 0, 0.08, and 0.1. The position o
the maximum is a decreasing function ofg. The maximum position
approaches,521 as g→gc1>20.09 and ,520 as g→gc2

>0.12. The inset shows the displacement vectoru212u20 needed
for slip growth by unit length from,520 to 21.
2-9
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AKIRA ONUKI PHYSICAL REVIEW E 68, 061502 ~2003!
u50 at t50 ~supposing a perfect crystal!. They approach the
elastic instability pointg5A3/6>0.289, where]sxy /]g
tends to vanish and softening with respect to further sh
deformation occurs. Then the shear stress drops sharply
the peak with catastrophic formation of slips. See the t
snapshots ofde35e32g in the figure. The orientations o
the slips are the most favorable ones withw50 andp/2 as
determined in Eq.~3.14!. For ġ51024 the slip formation is
triggered at a smaller strain (>0.25) and the spacing be
tween the slips is a few times wider than in the case oġ
51023. In our simulation the slip spacing depends on t
shear rateġ in the plastic flow regime if the other dimen
sionless parameters are held fixed. For the other curveġ
51023 ~with the lower peak! we put four slips with length
20 at t50, as will be illustrated in Fig. 13 below in detai
This curve indicates that the overshoot in the stress-st
relation is weakened by the initially preexisting defects.
Fig. 11 we display mechanically unstable points~dots! for
g50.29, 0.30, and 0.40 atġ51023, where at least one o
the eigenvaluesl1 andl2 of the matrix$Fab% defined be-
low Eq. ~2.7! is negative. We recognize that the stabili
conditions (l1.0 andl2.0) are satisfied at most points i
plastic flow. Figure 12 displays a snapshot of the displa
ment vectoru in a 1/4 region of the total system atg50.4
with ġ51024. We can see a number of slips and bands~ag-
gregates of slips here!, wherew50 for typeC andw5p/2
for type CC. The large horizontal shear band in the low
part is particularly conspicuous, where the band thickn
and the discontinuity ofux across it are both increased up
about three to four. We recognize that elementary slips~di-
poles of edge dislocations! tend to be created around pree
isting ones, yielding thicker shear bands. Similar thick sh
bands have been observed in previous simulations@17,18#.

In Fig. 13 we follow time-development ofde3 and d f el

5 f el2^ f el& at ġ51023 in the presence of four slips a

FIG. 10. The stress-strain curves in shear flow. The initial sta

are defectless forġ51024 and 1023 ~with the higher peak!. Four

slips are initially prepared forġ51023 ~with the lower peak!. Em-
bedded are snapshots ofde35e32g at g50.3 at the inception of
slip formation and atg50.4 in the plastic flow regime.
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t50, where the favorable slips~in black in the upper part a
g50) grow and the unfavorable ones~in white! shrink asg
increases. In the lower snapshots the elastic energy de
deviationd f el5 f el2^ f el& is shown, where the black dots rep
resent the dislocation cores. Atg50.176 we can see that th
energy density between the two dislocations at the slip e
is decreased for the favorable slips and is increased for
unfavorable slips, in accord with Eq.~3.13! and Fig. 7. At the
plastic flow regimeg50.387 the initial favorable slips grow
into thick layers where the dislocation density is very hig

Next we apply a cyclic shear deformation, whereġ(t)
51023 in the time regions ntp,t,(n11/2)tp and

s

FIG. 11. Mechanically stable regions~white! and unstable

points ~black! after application of shear flow withġ51023. The
initial state is crystalline without defects. At the stable points t
eigenvalues of the matrix$Fab% defined below Eq.~2.7! are both
positive, while at the unstable points at least one of them is ne
tive. At g50.29 the system is close to the peak position, atg
50.30 slips are appearing, and atg50.4 the unstable points ar
fluctuating in time near the dislocation cores.

FIG. 12. The displacement deviationdu5u2(gy,0) in the plas-

tic flow regime under shear strain atg50.4 with ġ51024. A 1/4
region (64364) of the total system is shown. The arrows are fro
the original position att50 in a perfect crystal to the displace
position in plastic flow.
2-10
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FIG. 13. Time evolution of
de3 and d f el in shear flow when
four slips are placed in the initia
state.
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ġ(t)521023 in the time regions (n11/2)tp,t,(n
11)tp . We choosetp51000, so the maximum ofg(t) is 0.5
and the minimum is 0. For the first two cycles (n50 and 1!,
Fig. 15 shows the stress-strain curve, while Fig. 16 shows
average elastic energy density^ f el& with a snapshot off el at
the point A where the average stress vanishes. As sal
features, we notice~i! residual strain at vanishing stress,~ii !
the shear stress becomes negative at the end of the first c
~iii ! no overshoot in the stress and the elastic energy from
second cycle, and~iv! that the stress and the elastic ener
take roughly constant values characteristic of well-develo
plastic flow in the region 0.25&g(t),0.5 for increasing
g(t) and in the region 0,g(t)&0.25 for decreasingg(t).
Thus we can see significant hysteresis behavior. In M
simulations of lowT glasses, similar stress-strain curves u
der stepwise strain rates have been obtained~but without
overshoot behavior because of disordered initial sta!
@16,41#.

We also notice that at the pointsA, B, andC, where the
average stress vanishes as in Fig. 14, the curves of^ f el& in
Fig. 15 are locally minimum. This suggests that the str
g(t) consists of an elastic straingel and a slip strain

gs5g2gel . ~4.2!

Roughly speaking, the elastic strain outside the slip lin
should give rise to the average stress, while the slip stra
caused by the jumps ofux across the slips. To be more qua
titative, we definegel as

A3~gel!5^sxy&. ~4.3!

The elastic energy density stored is then the sum of the e
tic energy density and the defect energy density. We de
the average defect energy density by

f D5^ f el&2F~gel,0!, ~4.4!
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whereF is defined by Eq.~2.5!. For smallgel we havegel

>^sxy& and F(gel,0)>gel
2 /2. Hence, in the vicinity of the

points wherê sxy&50, ^ f el&(t) should take a minimum, pro
vided that f D(t) changes slowly there. To confirm these a
guments, we plotf D(t) in Fig. 16. Forg(t)&0.3 in the first
cycle, however, it represents the elastic energy due to
inhomogeneous fluctuations of the local strains~mainly due
to de3) with the peak height at 0.012~not shown in the
figure!. After this initial period, f D(t) is in a range of
0.00420.005 reasonably representing the elastic energy
to the defects produced in plastic flow. The energy varia
A^(d f el)

2& is also about 0.005 in plastic flow obviously du
to the discrete nature of dislocation cores. Forġ51024, on
the other hand,f D(t) is almost constant around 0.002
plastic flow.

FIG. 14. The stress-strain curve for cyclic shear deformation

the first two cycles atġ561023 with period 103. Onceg*0.3 in
the first cycle, high-density dislocations are created. The sh
stress vanishes at the three pointsA, B, andC (3).
2-11
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B. Uniaxial stretching

In Fig. 17 we show the normal stress vs strain at cons
strain rateė for t>0. The characteristic features are ve
similar to those in Fig. 10. At smalle(t)5 ėt these curves
first follow the curve in the homogeneous case,

sxx2syy>2A2~e!5
2

3p
@sin~pe!1sin~2pe!#, ~4.5!

whereA2 was introduced in Eq.~2.15!. For the curve ofė
51024 and that ofė51023 ~with the higher peak! we set
u50 at t50. They approach the elastic instability pointe
5p21 cos21@(A3321)/8#>0.298. After the catastrophi
formation of slips, the slip orientation angles are6p/4 with

FIG. 15. The average elastic energy density^ f el& vs the strain
g(t) for cyclic shear deformation in the first two cycles. At th
pointsA, B, andC the shear stress vanishes. In the inset the sn
shot of f el at the pointA is shown, wherê sxy&5gel50 and the
black points represent dislocation cores.

FIG. 16. The energy densityf D defined by Eq.~4.2! vs the strain
g(t) for cyclic shear deformation in the first two cycles. It is th
defect energy density in plastic flow, but in the preplastic regim
arises from the heterogeneities in the strains and is enhanced a
onset of plastic flow.
06150
ntrespect to the stretched direction in agreement with the
periments@8–11,29,36,37# and the simulations@17,18#. The
discontinuity across the slip lines appears in the tetrago
strain e2, which can be seen in the two snapshots ofde2
5e22e. In Fig. 18 the displacement vectoru in a 1/4 region
of the total system ate50.46 with ė51023 is displayed,
where the orientations of the slips are the most favora

p-

it
the

FIG. 17. The stress-strain curves under uniaxial stretching.
initial states are defectless fore51024 and 1023 ~with the higher
peak!. Four slips are initially prepared fore51023 ~with the lower
peak!. Embedded are snapshots ofde25e22e at e50.31 at the
inception of slip formation and ate50.46 in the plastic flow
regime.

FIG. 18. The displacement deviationdu5u2(ex/2,2ey/2) in
the plastic flow regime under uniaxial stretching ate50.46 with
e51023. A 1/4 region (64364) of the total system is shown. Th
arrows are from the original position att50 in a perfect crystal to
the displaced position in plastic flow.
2-12
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PLASTIC FLOW IN TWO-DIMENSIONAL SOLIDS PHYSICAL REVIEW E68, 061502 ~2003!
ones withw56p/4 as determined below Eq.~3.14!. In the
plastic flow regime, the shear bands grow into thick lay
containing high-density dislocations.

Next we apply cyclic uniaxial stretching, whereė(t)
51023 in the time regionsntp,t,(n11/2)tp and ė(t)
521023 in the time regions (n11/2)tp,t,(n11)tp . We
choosetp51000, so the maximum ofe(t) is 0.5 and the
minimum is 0. Figure 19 shows the stress-strain curve for
first four cycles, where it is nearly periodic from the seco
cycle. As in the shear deformation case we introduce
average elastic straineel by

2A2~eel!5^sxx2syy& ~4.6!

and the average defect energy densityf D by

f D5^ f el&2F~0,eel!, ~4.7!

whereF is defined by Eq.~2.5!. The average slip strain i
given by es5e2eel . For small eel we have 2eel

>^sxx2syy& andF(0,eel)>eel
2 /2. Figure 20 shows the av

erage elastic energy density^ f el& and the defect energy den
sity f D . The latter is in a range 0.008–0.009 in plastic flo
The inset of Fig. 20 displays a snapshot off el at the pointA
in the first cycle, where the average normal stress differe
vanishes. Comparing it with the snapshot off el in Fig. 15
under shear deformation, we notice a considerable differe
in the spatial anisotropy of the dislocation distribution b
tween the two cases.

C. Strain-induced disordered states

In the plastic flow regime dislocations are proliferated a
a structurally disordered state is realized. This effect may
called strain-induced disordering. We mention a simulation
by Ikeda et al. @57#, who applied a tensile strain to a 3
model to induce a change from a perfect crystal to an am

FIG. 19. The stress-strain curve for cyclic uniaxial stretching

the first four cycles atė561023 with period 103. Oncee*0.3 in
the first cycle, high-density dislocations are created. In this case
stress-strain relation becomes nearly periodic from the sec
cycle.
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phous solid. In Fig. 4 in our previous work@39# we switched
off a shear flow~a! before the peak time of the stress,~b! just
after the peak time, and~c! in well-developed plastic flow.
Affine deformation in~a! was maintained, while no appre
ciable time evolution was detected after transients in~b! and
~c!. This means that the structurally disordered states
metastable obviously due to the Peierls potential.

Here a shear flow withġ51023 is applied att50 and is
stopped at timetA>600 ~at the pointA in Fig. 14!, and then
the system is relaxed for a time period oftw5105. In Fig. 21,
slow relaxation of the average energy density^ f el&(t)
5Fel /N

2 is shown in the time rangetA,t,tA1tw , where
we set ux5gAL0 and uy50 at the topy5L0 with gA
>0.40 together withu50 at the bottom. The dislocation
distributions here closely resemble that in the inset of Fig.
~but are not identical because they are obtained from dif
ent runs!. In the upper curve~a! the noise strengthe th in Eq.
~2.25! is 0.1 as in the previous simulations in this sectio
where each maximum in the initial stage corresponds to
energy increase accompanied with a configuration cha
around a dislocation core. In~a! the typical energy increas
~in Fel) is of order 1025N2;0.1 for each event. However
there is no appreciable relaxation fort*33103. In ~b! we
increase the noise strengthe th to 0.25 to obtain a larger en
ergy decrease in̂f el&(t) with a larger thermal noise supe
imposed. In these cases only a small number of configura
changes (;10) occur around dislocation cores even fortw
5105, so the effect of the structural relaxation is negligib
on the macroscopic level~no aging effect!. In fact, the stress-
strain curves after switching-on of the shear flow att5tA

1tw with ġ51023 are almost independent oftw if plotted as
a function of Dg(t)5ġ(t2tA2tw). Interestingly, they ex-
hibit a rounded peak atDg50.15 as can be seen in the inse
We also comment on the average shear stress^sxy&(t). In
the waiting time region (tA,t,tA1tw), it fluctuates in time

he
nd

FIG. 20. The average total elastic energy density^ f el& ~solid
line! and the defect partf D ~broken line! vs the straine(t) for cyclic
uniaxial stretching in the first two cycles. In the inset the snaps
of f el at the pointA in the first cycle in Fig. 19 is shown, wher
^sxx2syy&5eel50 and the black points represent dislocati
cores.
2-13
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FIG. 21. Relaxation of the average energ
density^ f el&(t) for e th50.1 ~a! ~upper curve! and
e th50.25 ~b! ~lower curve!. The shear flow is
stopped at timetA>600 ~at the pointA in Fig.
14! and the system is relaxed for a time period
tw5105. The energy decreases are extreme
small as compared to the initial values, so there
almost no appreciable aging behavior here. T
inset displays the stress-strain curves,^sxy& vs
Dg(t), after the shear is switched on again fort
>tA1tw , where the solid line corresponds to~a!
and the noisy broken line to~b!. The Dg(t)

5ġ(t2tA2tw) is the excess strain withġ
51023. Almost identical stress-strain curves a
obtained for any waiting timetw shorter than 105.
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ly to
around 0, and its noise amplitude is only of order 0.002
~a! and 0.004 for~b!, so the stress is nearly fixed.

Note that the crystal angleu with respect to thex axis has
been assumed to be 0@see Eq.~2.12!#. We need to show tha
the strain-induced disordered states remain metastable
for different angles of the crystal axes with respect to
flow direction. To this end, as in Fig. 21~a!, we have calcu-
lated the elastic energy density foru5p/12 with the other
parameters unchanged fort,105. In such a run, it has de
creased from 0.006 605 to 0.006 575 fortA,t&3000 and
saturated fort*3000, similarly to the behavior in Fig. 21~a!,
again leading to no appreciable aging.

V. SUMMARY AND CONCLUDING REMARKS

In summary, we have presented a nonlinear elasti
theory taking into account the periodicity of the elastic e
ergy density with respect to the shear and tetragonal stra
e3 and e2. It has the symmetry of the 2D triangular lattic
but is surprisingly isotropic in thee3-e2 plane. We summa-
rize our main results together with some comments.

~i! We have numerically examined the slip structure a
function of its length,, its anglew, and applied strainsg
and e. In external strain field, slips should appear in t
orientations minimizing the slip energyFslip and they should
grow into shear bands observed in previous experiments
der external load in various materials. The snapshots of
displacement vector in the plastic flow regime, Fig. 12
shear deformation and Fig. 18 for uniaxial stretching, m
unambiguously illustrate the physical processes taking pl
06150
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We remark that the previous experiments have mostly b
performed under uniaxial~biaxial or triaxial! deformation, so
future experiments with shear deformation (^ux&5gy and
^uy&50) should be informative. On the other hand, in cry
talline solids with strong crystal anisotropy, the slip plan
are parallel to particular crystal planes@58#. In our simula-
tions we may obtain slips as steady solutions of our dyna
model due to the presence of the Peierls potential ene
However, they cannot be stationary forg,gc1;20.1 or g
.gc2;0.1 in shear straing, where the potential minima
disappear and the slips shrink or grow.

~ii ! We have examined plastic flow by applying a consta
strain rate att50. If there is no initial disorder, the stress
strain curve exhibits a pronounced overshoot with a p
stress of order 10% of the shear modulus. However, in
presence of initial disorder, the overshoot is weakened
even erased, as revealed by simulations with initial four s
in Fig. 10, under cyclic shear in Figs. 14 and 20, and a
staying at the zero-stress pointA in the inset of Fig. 21. In
accordance with these findings, previous simulations p
formed with various initial states have demonstrated se
tive dependence of the overshoot behavior on the quenc
conditions@18,59#. In addition, a number of previous simu
lations have reported either existence or nonexistence of
stress peak. In some real glassy systems including polym
overshoot behavior has been widely observed@13,26,27,29#.
In an amorphous metal, the stress increased monotonical
a steady-state value for slow strain rate (ė,1023 s21), while
a maximum appeared ate;0.06 for large strain rate
( ė.531023 s21) @27#.
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PLASTIC FLOW IN TWO-DIMENSIONAL SOLIDS PHYSICAL REVIEW E68, 061502 ~2003!
~iii ! As illustrated in Figs. 16 and 20 we have divided t
total elastic energy into the affine part and the defect p
following definitions~4.4! and~4.7!. In our model, once de
fects are created, the defect elastic energy is rather we
dependent on the deformation history. On the basis of
division, we may easily understand the characteristic featu
of the stress-strain curves in the cyclic straining mentione
the preceding section. In future microscopic simulations
glassy materials, this kind of energy division should be
formative at relatively small strains, where we are interes
in the defect contribution to measurable quantities such
the specific heats. Here we mention microscopic calculati
of the average potential energy per particle^e& in super-
cooled states under shear@59–61#, where^e& was increased
considerably by shear flow above the initial value in qui
cent states. It is remarkable that, while^e& in quiescent states
sensitively depends on the quenching history~aging effect!
@59,62#, it becomes uniquely determined in shear flow f
shear rates larger than the inverse structural relaxation
ta

21 . This is because sheared systems are effectively dr
away from the glass transition@24#. This effect would be
consistent with our result thatf D(t) is kept nearly constant in
plastic flow as in Figs. 16 and 20.

~iv! In our simulations slips emerge as long straight lin
as shown in the snapshots ofe3 or e2. In our model the
crystal order is not broken over long distances, but if dis
der is fully introduced, the glide motions of slips in particul
directions should be much limited. In MD simulations of tw
component glasses, for example, such degree of diso
should be sensitive to the size ratio of the two species
fact, it was rather close to 1 in the simulation by Denget al.
@13,16#, wherenanocrystalline orderwas realized@63# be-
cause of rather weak frustration and long slips with atom
thickness emerged along the crystal axes. It is therefore
formative to perform MD simulations with various size r
tios and examine how the shapes of local configurat
changes depend on the size ratio.

~v! As a special ingredient of our theory, our elastic e
ergy is almost isotropic if the distance from the center o
unit cell in thee3-e2 plane is shorter than 0.5~see Figs. 1–3!.
The snapshot atg50.4 in Fig. 11 demonstrates that mo
spatial points are in the mechanically stable regions in pla
flow and hence are in the isotropic elasticity regions. The
fore, our results such as the orientations of well-develo
shear bands should be applicable to those in amorphous
terials ~which are isotropic on large scales!.

~vi! The dimensionless parameterl in Eq. ~2.23! is re-
lated to Poisson’s ration as in Eq.~3.2! and the dislocation
energy depends onn. Our choiceK0 /m05l51 or n50 is
rather unusual, sinceK0 is usually considerably larger tha
m0 in high density systems. The appropriateness of the o
choicesh0* 51 in Eq. ~2.26! ande th50.1 in Sec. IV should
also be examined in future.

~vii ! As another aspect, we mention the effect of elas
interaction among dislocations. In our case slips are m
easily created around preexisting ones, as already report
Ref. @18#. In the insets of Figs. 15 and 20 we can see
tendency of aggregation of dislocation cores. In real 3D cr
tals a tangle of dislocations often appears as a characte
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feature of fatigued states@64# and has also been realized
3D large-scale simulations@3,4#. In the literature the inter-
dislocation elastic interaction is believed to yield mesosco
patterns in the dislocation distribution@3,4,64#.

~viii ! As already stressed in the Introduction, in order
describe glass dynamics in a more satisfactory level,
should try to include a variable representing the local fr
volume @39# and the configurational frustration effect in
duced by the size disparity between the two species. T
generalization should be essential with increasingT towards
the glass transition. For example, we may predict a grad
diffusional increase of the free volume around dislocat
cores@39#, which induces breakage of the Peierls poten
and configuration changes presumably resulting in sign
cant aging effects.@The critical strainsgc1 andgc2 discussed
below Eq.~3.21! and indicated in Fig. 6 by arrows are se
sitively decreased in magnitude by a small amount of
local free volume near the dislocation cores.# In the present
study, as shown in Fig. 21, we have found no apprecia
aging effect.

~ix! The simulations@13,16# suggested that the shear ba
regions tend to be disordered and exhibit liquidlike behav
A phase field approach@65# would be useful to account fo
this effect and also to describe melting due to dislocat
proliferation.

~x! In this work we have not constructed macroscop
laws such as constitutive equations. To this end we n
deeper understanding of dislocation dynamics.
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APPENDIX

Here we examine the linearized equations~2.16! and
~2.17! around a homogeneously strained state with^e1&
50, ^e3&5g, and ^e2&5e. We neglect the random stres
and assume that all the deviations depend on space and
as exp(ik•r1 ivt). Then the deviation of the displaceme
vector (dux ,duy) obeys

Vdux5Cxxdux1Cxyduy ,

Vduy5Cxydux1Cyyduy , ~A1!

where

V5rv2/k22 ih0v. ~A2!

The frequencyv is expressed in terms ofV at smallk as

v56~V/r!1/2k1 i ~h0/2r!k21O~k3!. ~A3!

The first term is the oscillation frequency forV.0 and the
second term viscous damping. The coefficientsCab are ex-
pressed in terms of the coefficientsFab in Eq. ~2.7! as
2-15
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Cxx5~K01F22!nx
212F23nxny1F33ny

2 ,

Cyy5~K01F22!ny
222F23nxny1F33nx

2 , ~A4!

Cxy5~K02F221F33!nxny1F23~nx
22ny

2!.

Heren5k21k is the unit vector representing the direction
the wave vectork. From Eq.~A1! it follows the relation

~V2Cxx!~V2Cyy!5Cxy
2 . ~A5!

Let the angle ofn bew1p/2 with respect to thex axis; then,

nx52sinw, ny5cosw. ~A6!

After some calculations Eq.~A5! is solved to give

V5 1
2 ~K01F221F33!

6A 1
4 K0

21A21B21K0~A cos 4w1B sin 4w!,
~A7!

whereA5(F222F33)/2 andB5F23. As a function ofw the
slowest mode is obtained if the combinationA cos 4w
1Bsin 4w takes the maximum (A21B2)1/2. The correspond-
ing minimum ofV is given by
p,

r.
’’

on

n

06150
Vmin5
1
2 ~F221F33!2AA21B2. ~A8!

Notice thatVmin is the smaller of the two eigenvalues of th
matrix $Fab%. We may draw two conclusions.

~i! As the instability point is approached,Vmin tends to
zero with softening of the sound speed (Vmin /r)1/2 of the
corresponding acoustic mode.

~ii ! If the approximate expression~2.8! is used, we have
A52G9(e22g2) andB54G9eg so that

A cos 4w1B sin 4w5C cos~4w12a!, ~A9!

where C52uG9u(e21g2) and a is defined by Eq.~3.15!.
Thus the minimum condition forV yielding Eq. ~A8! is
given by 4w12a52np and is equivalent to Eq.~3.14!.
That is, the slowest mode, which undergoes softening at
instability point, has a wave vector perpendicular to the
vorable slip orientations given by Eq.~3.14!. This is the case
even far below the instability point. In addition, for the slow
est mode, Eq.~A1! gives

duy /dux5~Vmin2Cxx!/Cxy5cotw, ~A10!

if a is eliminated using Eq.~3.14!. Thus the deviationdu is
perpendicular to the wave vectork or the slowest mode is a
transverse sound.
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